Math 246C Lecture 17 Notes

Daniel Raban

May 7, 2019

1 Introduction to Several Complex Variables

1.1 Holomorphic functions of several complex variables

Definition 1.1. Let $\Omega \subseteq \mathbb{C}^n$ be open, and let $f : \Omega \to \mathbb{C}$ be a function $f = f(z_1, \ldots, z_n) = f(x_1, y_1, \ldots, x_n, y_n)$, where $z_j = x_j + y_j$. We say that f is **holomorphic** in Ω if $f \in C^1(\Omega)$ and if for every $j, z_j \mapsto f(z_1, \ldots, z_j, \ldots, z_n)$ where it is defined.

Define

$$\frac{\partial f}{\partial \overline{z}_j} = \frac{1}{2} \left(\frac{\partial f}{\partial x_j} + i \frac{\partial f}{\partial y_j} \right)$$

for $1 \leq j \leq n$. Then f is holomorphic if and only if $f \in C^1(\Omega)$ and $\frac{\partial f}{\partial \overline{z}_j} = 0$ for all j. Define also

$$\frac{\partial f}{\partial z_j} = \frac{1}{2} \left(\frac{\partial f}{\partial x_j} + \frac{1}{i} \frac{\partial f}{\partial y_j} \right).$$

For all $f \in C^1(\Omega)$,

$$df = \underbrace{\sum_{j=1}^{n} \frac{\partial f}{\partial z_j} \, dz_j}_{=:\partial f} + \underbrace{\sum_{j=1}^{n} \frac{\partial f}{\partial \overline{z}_j} \, d\overline{z}_j}_{=:\overline{\partial} f}.$$

So f is holomorphic iff $ba\partial f = 0$.

Example 1.1. Let $f \in L^1(\mathbb{R}^n)$ be such that f = 0 for large |x|. Then the Fourier transform

$$\widehat{f}(\xi) = \int f(x)e^{-ix\cdot\xi} dx, \qquad \xi \in \mathbb{R}^n$$

extends to the entire function

$$\widehat{f}(\zeta) = \int f(x)e^{-ix\cdot\zeta} dx, \qquad \zeta \in \mathbb{C}^n,$$

where $x \cdot \zeta = \sum_{j} x_{j} \zeta_{j}$ (in particular, there are no complex conjugates involved). **Remark 1.1.** The space of holomorphic functions, $\operatorname{Hol}(\Omega)$ is a ring.

1.2 Cauchy's integral formula in a polydisc

What is the analogue of a disc in \mathbb{C}^n ? We could try Euclidean balls, but this turns out to be more complicated.

Definition 1.2. A polydisc $D \subseteq \mathbb{C}^n$ si a set of the form $D = D_1 \times \cdots \times D_n$, where each D_j is an open disc in \mathbb{C} . The **boundary** is $\partial D = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n : \exists j \text{ s.t. } z_j \in \partial D_j\}$. The **distinguished boundary** of D is $\partial_0 D = \{z \in \mathbb{C}^n : z_j \in \partial D_j \forall j\}$.

Theorem 1.1 (Cauchy's integral formula in a polydisc). Let $D = D_1 \times \cdots \otimes D_n$ be a polydisc, let $f \in C(\overline{D})$ be such that f is separately holomorphic¹ in $z_j \in D_j$ for all j. Then

$$f(z) = \frac{1}{(2\pi i)^n} \int_{\partial_0 D} \frac{f(\zeta)}{(\zeta_1 - z_1) \cdots (\zeta_n - z_n)} \, d\zeta_1 \cdots \, d\zeta_n$$

(The integral can be defined by parametrizing $\partial_0 D$: for $D_j = \{|z_j - \alpha_j| < r_j\}$, let $\zeta_j(t) = \alpha_j + r_j e^{it_j}, \ 0 \le t_j \le 2\pi$.)

Proof. Proceed by induction on n. When n = 1, this is the usual Cauhy's integral formula. Suppose the formula holds for n - 1. Write $D = D(\alpha_1, r_1) \times D'$, where $D(\alpha_1, r_1) \subseteq \mathbb{C}$ and $D' \subseteq \mathbb{C}^{n-1}$. For every $z \in D(\alpha_1, r_1)$,

$$f(z,z') = \frac{1}{(2\pi i)^{n-1}} \int_{\partial_0 D'} \frac{f(z,\zeta')}{(\zeta_2 - z_2) \cdots (\zeta_n - z_n)} \, d\zeta'.$$

By Cauchy's integral formula and the fact that $f \in C(\overline{D})$,

$$f(z,\zeta') = \frac{1}{2\pi i} \int_{\partial D(\alpha_1,r_1)} \frac{f(\zeta,\zeta')}{\zeta-z} d\zeta$$

= $\frac{1}{2\pi i} \int_{\partial D(\alpha_1,r_1)} \frac{1}{\zeta-z} \left[\frac{1}{(2\pi i)^{n-1}} \int_{\partial_0 D'} \frac{f(z,\zeta')}{(\zeta_2-z_2)\cdots(\zeta_n-z_n)} d\zeta' \right] d\zeta$
= $\frac{1}{(2\pi i)^n} \int_{\partial_0 D} \frac{f(\zeta)}{(\zeta_1-z_1)\cdots(\zeta_n-z_n)} d\zeta_1\cdots d\zeta_n.$

The result follows.

Corollary 1.1. Let f satisfy the assumptions in the theorem. Then $f \in C^{\infty}(D)$, and therefore, $f \in Hol(D)$.

Corollary 1.2. Let $\Omega \subseteq \mathbb{C}$ be open, and let $f \in C(\Omega)$ be separately holomorphic. Then $f \in Hol(\Omega)$.

Proof. Take a polydisc D with $\overline{D} \subseteq \Omega$ around each point.

¹In particular, we are not assuming that f is holomorphic because we do not assume that $f \in C^1$.

1.3 Local uniform convergence of holomorphic functions

Theorem 1.2. Let $u_k \in \operatorname{Hol}(\Omega)$ be such that $u_k \to u$ locally uniformly in Ω . Then $u \in \operatorname{Hol}(\Omega)$, and for every α , $\partial^{\alpha} u_k \to \partial^{\alpha} u$ locally uniformly. Here, $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ is a multiindex, and $\partial^{\alpha} = \partial_{z_1}^{\alpha_1} \cdots \partial_{z_n}^{\alpha_n}$.

Proof. Let D be a polydisc with $\overline{D} \subseteq \Omega$. Then

$$u_k(z) = \frac{1}{(2\pi i)^n} \int_{\partial_0 D} \frac{u_k(\zeta)}{(\zeta_1 - z_1) \cdots (\zeta_n - z_n)} \, d\zeta, \qquad z \in D.$$

It follows that $u \in \text{Hol}(\Omega)$, and $\partial^{\alpha} u_k \to \partial^{\alpha} u$ uniformly in a neighborhood of the center of D for all α .

1.4 Cauchy's estimates

Let $D \subseteq \mathbb{C}^n$ be a polydisc, let $u \in C(\overline{D}) \cap Hol(D)$, and write

$$u(z) = \frac{1}{(2\pi i)^n} \int_{\partial_0 D} \frac{u(\zeta)}{(\zeta - z)^E} \, d\zeta.$$

Here, when α is a multiindex, write $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$, and denote $E(1, \ldots, 1)$. Also, when α is a multiindex, denote $\alpha! := \alpha_1! \cdots \alpha_n!$. Then for all α ,

$$\partial^{\alpha} u(z) = \frac{\alpha!}{(2\pi i)^n} \int_{\partial_0 D} \frac{u(\zeta)}{(\zeta - z)^{E+\alpha}} \, d\zeta.$$

We then have Cauchy's estimates:

Theorem 1.3 (Cauchy's estimates). Let $D \subseteq \mathbb{C}^n$ be a polydisc centered at 0, and let $u \in C(\overline{D}) \cap \operatorname{Hol}(D)$. Then

$$|\partial^{\alpha} u(0)| \le \alpha! \frac{M}{r^{\alpha}}, \qquad M = \sup_{\partial_0 D} |u|.$$

Proof. By taking derivatives in the Cauchy integral formula as above, we get

$$|\partial^{\alpha} u(0)| \leq \frac{\alpha!}{(2\pi i)^n} \frac{M(2\pi i)^n r^E}{r^{E\alpha}} = \alpha! \frac{M}{r^{\alpha}}.$$

1.5 Analyticity of holomorphic functions

Theorem 1.4. Let $D \subseteq \mathbb{C}^n$ be a polydisc centered at 0, and let $f \in Hol(D)$. We have, with normal convergence in D:

$$f(z) = \sum_{\alpha} \frac{\partial^{\alpha} f(0)}{\alpha!} z^{\alpha}.$$

Here, normal convergence means that $\sum u_j$ converges normally in Ω ($\sum \sup_K |u_j| < \infty$) for all compact $K \subseteq \Omega$.